$\gamma \leftrightarrow \alpha_2$ Phase transformation in fractured high temperature stress rupture Ti-48Al-2Nb(at.%)

Z. Y. CHENG, X. W. DU, JING ZHU^{*} Electron Microscopy Laboratory, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China E-mail: jzhu@mail.tsinghua.edu.cn

C. X. CAO, F. S. SUN Aeronautical Materials Research Institute of Beijing, Beijing 100095, People's Republic of China

The $\gamma \leftrightarrow \alpha_2$ phase transformation in fractured high temperature stress rupture Ti-48Al-2Nb(at.%) alloy has been studied by analytical electron microscopy. α_2 and γ phases were found at grain boundaries. α_2 layers that suspended in γ layers and interfacial ledge higher than $2d_{(111)\gamma}$ at γ/α_2 interfaces were observed in the lamellar grains. These facts indicated that $\gamma \leftrightarrow \alpha_2$ phase transformation and dynamic recrystallization have occurred during high temperature stress rupture deformation. It can be concluded that deformation induced $\gamma \leftrightarrow \alpha_2$ phase transformation and dynamic recrystallization resulted in the presence of γ particles at grain boundaries. A structural and compositional transition area between deformation-induced α_2 (or γ) and its adjacently original γ (or α_2) phases was found by HREM and EDS and is suggested as a way to transform between γ and α_2 phase during high temperature stress rupture deformation. The transition area was formed by slide of partial dislocations on close-packed planes and diffusion of atoms. © 2000 Kluwer Academic Publishers

1. Introduction

The Ti-Al intermetallics are potentially good hightemperature structural materials, mainly due to their high modulus retention, low density and oxidation resistance at elevated temperatures [1]. The deformation behavior and mechanisms at ambient temperature have been extensively studied. Accompanying deformation there are some deformation-induced phase transformations, including $\gamma \rightarrow \alpha_2$ and $\alpha_2 \rightarrow \gamma$ [2–4]. $\gamma \rightarrow \alpha_2$ phase transformations have also been observed in hotforged Ti-Al-Nb(at.%) [5]. Recently, intensive investigations of creep behavior and mechanisms in Ti-Al intermetallics have being conducted [6–12]. The creep behavior of materials depends strongly on their microstructures, which can be optimized and designed through the proper control of processing and alloying. Thus some studies focussed on the effect of microstructure on creep properties and changes in microstructure during creep [10, 11, 13, 14–16].

The present paper reports the investigation of microstructural changes and $\gamma \leftrightarrow \alpha_2$ phase transformation observed in fractured high-temperature stress rupture Ti-48Al-2Nb(at.%) duplex alloy by conventional and high resolution techniques of transmission electron microscopy.

2. Experimental procedure

A conventional tungsten-arc-melting technique was employed to prepare the Ti-48Al-2Nb(at.%) alloy. Sub-

sequently, the material was heat treated according the following schedules: (1) annealing at 1200°C for 12 h and then air cooling (2) annealing at 900°C for 8 h and then air cooling. The material was deformed at a temperature of 800°C under a stress of 250 MPa to failure at 130 h. To investigate the microstructural changes of the alloy during high temperature stress rupture deformation, samples have been prepared as follows: slices about 0.3 mm in thickness were cut, perpendicular to the deformation axis, from the position adjacent to the failure section (here referred to as deformed sample) and the fixed end of the fractured specimen (here referred to as undeformed sample), respectively, as shown in Fig. 1. The slices were mechanically ground and then thinned by twin-jet polishing. The polished specimens were then examined using a JEM-2010F field emission analytical transmission electron microscope attached with an EDS (Energy Dispersive Spectrometer Link ISIS) system.

3. Experimental results and discussion

3.1. $\gamma \rightarrow \alpha_2$ phase transformation and dynamic recrystallization at grain boundaries

Conventional TEM observations indicate that the TiAl sample used in the present study shows a duplex microstructure. The undeformed sample in the present study was taken from the fixed end of the fractured high temperature stress rupture specimen, so the undeformed

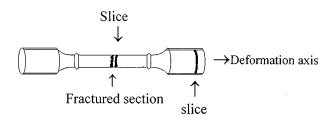
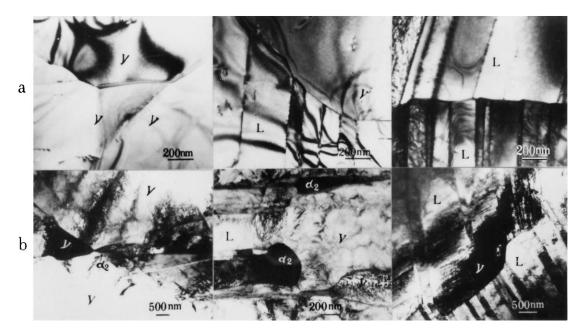
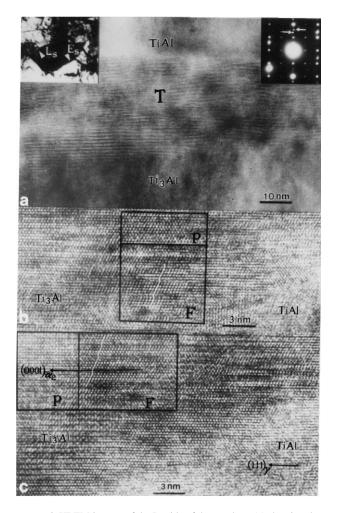


Figure 1 A schematic illustration of the specimens studied.

sample may be considered as a aged sample (at 800°C for 130 h). In the undeformed sample, no α_2 and γ particles precipitate at grain boundaries, as shown in Fig. 2a. This implies that $\gamma \leftrightarrow \alpha_2$ phase transformation at grain boundaries didn't occur with aging. Significant microstructural difference of grain boundaries has been detected in the deformed sample compared with the undoformed sample (see Fig. 2b). The experimental results from the combination of SAD (selected area diffraction) patterns and EDS confirmed that the deformed sample contains α_2 and γ particles at the boundaries γ_e/γ_e , γ_e/L and γ particles appeared at the grain boundaries L/L (γ_e : equiaxed γ grain, L: lamellar grain). A summary of α_2 and γ phases precipitates at grain boundaries is given in Table I.


Considering the low stacking energy of binary TiAl alloy [17, 18] and findings on dynamic recrystallization in some TiAl alloy during creep [10, 15], the new γ particles at grain boundaries γ_e/γ_e , γ_e/L and L/L might be attributed to dynamic recrystallization during high temperature stress rupture deformation. According to these facts that no occurrence of $\gamma \rightarrow \alpha_2$ phase transformation with aging and the appearance of α_2 phase at grain boundaries in the deformed alloy, it can be confirm that deformation induced $\gamma \rightarrow \alpha_2$ phase transformation at grain boundaries in Ti-48Al-2Nb(at.%) alloy during high temperature stress rupture deformation.

To understand how deformation-induced $\gamma \rightarrow \alpha_2$ phase transformation takes place, HREM observation


TABLE I Summary of deformation-induced α_2 and γ phase at grain boundaries

	composition of deformation-induced phases at grain boundaries(at.%)					
type of a grain boundary and deformation-induced	α2			γ		
phases at grain boundaries	Ti	Al	Nb	Ti	Al	Nb
Y DO Y	65.68	32.47	1.85	49.40	48.09	2.51
γ α ₂ γ	60.79	37.34	1.87	48.74	49.18	2.08
$\frac{\alpha_2}{\gamma}$ $\frac{\gamma}{\gamma}$ $\frac{\gamma}{\alpha_2}$	-	-	-	49.06	48.44	2.50

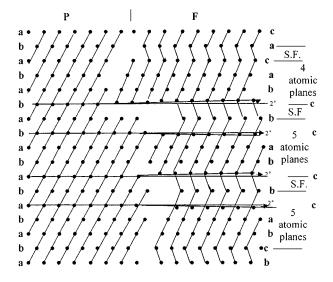

and microanalysis of composition are performed. One of the examples shows in Figs. 3-5. The upper left corner of Fig. 3a shows a morphology of a deformationinduced α_2 precipitate at the γ_e/L boundary. E_s denotes one side of the α_2 precipitate, close to the equiaxed γ_e grain. The other side of the α_2 precipitate adjacent to the γ layer in a lamella, is marked as L_s. HREM images of the sides L_s and E_s of the α_2 phase, viewed along the $[1120]_{\alpha 2}$ direction, are shown in Fig. 3 and Fig. 5, respectively. The HREM image of the side L_s (see Fig. 3a) shows that there existed a transition layer (marked as T) between the perfect α_2 precipitate and γ layer in the lamella. The structure of the transition layer T is different from perfect α_2 or γ phases. The HREM image (Fig. 5) of the side E_s , on the other hand, shows no transition layer such as layer T between the α_2 precipitate and γ equiaxed grain. The thickness of layer T in Fig. 3a is about 5 nm. Figs. 3b and 3c are enlargements of layer T. Layer T consists of two types of areas (marked P and F, respectively) revealing different

Figure 2 Morphology of grain boundaries in Ti-48Al-2Nb(at.%) alloys. (a) undeformed, (b) high temperature stress rupture fractured. α_2 and γ phases were found at grain boundaries in the deformed alloy.

Figure 3 HREM images of the L_s side of the α_2 phase (a) showing the transition layer T between perfect α_2 and γ phases, viewed along the $[1120]_{\alpha 2}$ direction. An image of the α_2 phase at a grain boundary γ_e/L is shown in the upper left corner. (b) and (c) enlargements of the transition layer T in Fig. 2a presenting a stacking-fault-like structure.

Figure 4 A schematic diagram showing the stacking-fault-like structure in the transition layer T in Fig. 3.

HREM images under the same defocus conditions and thickness. The HREM images of the P areas in Figs. 3b and 3c show the structure of a perfect α_2 phase. Further examination of the HREM images of areas F in Figs. 3b and 3c reveals an abc stacking sequence of γ phase with stacking faults every 4, 5 or 6 atomic planes, as

Figure 5 HREM image of the side E_s of the α_2 precipitate (shown at upper left in Fig. 3a). No transition layer is found between perfect α_2 precipitate and the equiaxed γ_e grain.

shown schematically in Fig. 4 (a, b and c are closepacked planes). Therefore the layer T may be considered as the result of the slide of partial dislocations on close-packed planes. Consequently, abab stacking sequences of α_2 phase was obtained near those stacking fault planes. Slide of partial dislocations went on in the regions with abc stacking sequences in the layer T during deformation, the stacking structure of α_2 phase might be ultimately formed. It can be also seen from Figs 3b and 3c that the atomic planes next to the stacking fault planes exhibit a misorientation angle of about 2° with the $(0001)_{\alpha 2}$ plane. These atomic planes contribute the diffraction spots indicated by white arrows in the diffraction pattern at the upper right corner of Fig. 3a.

EDS spectra were acquired from side E_s , the areas F of side L_s , and γ grain adjacent to sides E_s and L_s . An electron beam with a 1.6 nm diameter was used. The results of microanalysis of these areas were listed in Table II. It is clearly seen from the Table II that the composition of area F is different from that of the α_2 precipitate and γ_e grain. The result of microanalysis demonstrates that atoms were diffusing to generate the correct composition and ordering of α_2 phase along with slide of partial dislocations on close–packed planes.

3.2. $\gamma \leftrightarrow \alpha_2$ phase transformation in lamellar grains

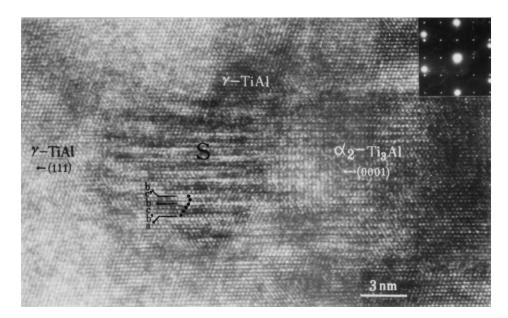
As can be seen in Fig. 6, the microstructure of lamellar grains in the deformed sample is significantly

TABLE II The composition of the sides E_s and L_s of the α_2 particle, α_2 and γ phase

	Ti (at.%)	Al (at.%)	Nb (at.%)
Area F on the			
side L _s	54.97	42.30	2.73
side E _s	63.52	33.79	2.69
$\gamma_{\rm e}$ grain	48.07	48.97	2.96
α_2 precipitate	63.35	33.78	2.87

Figure 6 Lamellar structure with α_2 and γ layers in Ti-48Al-2Nb(at.%) alloys. (a) undeformed, (b) high temperature stress rupture fractured. (c) An enlargement of α_2 ledges indicated by white arrows in Fig. 6b.

different from that observed in the undeformed sample. Similar to results reported previously in Ti-Al intermetallics [19], many α_2 layers (designated with black arrows in Fig. 6) suspended in wider γ layers and higher ledges at α_2/γ interfaces (indicated by white arrows in Fig. 6) were observed. These changes of morphology in lamellar grains illustrate that $\gamma \leftrightarrow \alpha_2$ phase transformation also occurred in lamellar grains during high temperature stress rupture deformation. Based on the same analysis as $\gamma \rightarrow \alpha_2$ phase transformation at grain boundaries, it can thought that deformation resulted in $\gamma \leftrightarrow \alpha_2$ phase transformation in lamellar grains.


TABLE III The composition of the tip of a α_2 layer and the adjacent α_2 and γ layers

	Ti (at.%)	Al (at.%)	Nb (at.%)
The tip of a α_2 layer	52.01	45.50	2.49
Adjacent γ layer	48.91	48.67	2.42
Adjacent α_2 layer	63.08	34.68	2.24

Fig. 7 shows the HREM image of the tip of a α_2 layer suspended in a γ lamella. It can be seen clearly in Fig. 7 that the HREM image of the small transition area (marked as S) at the tip of the α_2 lamella is very much different from the adjacent γ and α_2 . The stacking sequence of the area S is ... ab'cbc'b..., which is similar to or identical to that of Ti₂Al phase in Al-rich TiAl alloy reported previously [20-22]. The length of the area S along the α_2 layer is about 12 nm. It is also noted that due to the area S is really small thus the SAD pattern (shown at the upper right corner in Fig. 7), taken from the region including the area S, α_2 and γ phase, shows no other spots except those for α_2 and γ phases. This may be the reason why the transition area S has not been reported up to now. Table III presents the composition of area S, and the α_2 and γ phases close to area S. The diameter of the electron beam used was 1.6 nm. The composition of area S corresponds to area F in Fig. 3c. The ratio of Ti to Al in the area S is higher than that of γ phase and lower than that of α_2 phase. Similar to the discussion of $\gamma \rightarrow \alpha_2$ phase transformation at grain boundaries, it is suggested that $\gamma \leftrightarrow \alpha_2$ phase transformation in lamellar grains was finally accomplished by forming the transition area S and atomic diffusion. The transition area S was formed by slide of partial dislocations on close-packed planes and atomic diffusion.

4. Conclusions

(1) Deformation induced $\gamma \rightarrow \alpha_2$ phase transformation at grain boundaries and $\gamma \leftrightarrow \alpha_2$ phase transformation

Figure 7 HREM image of the tip of an α_2 layer suspended in a γ layer: the image was viewed along the $[110]_{\gamma}/[1120]_{\alpha_2}$ direction. The HREM image shows a transition area (marked S) with the stacking sequence ... ab'cbc'b... that is the same as that attributed to the Ti₂Al phase.

in lamellar grains during high temperature stress rupture deformation. $\gamma \leftrightarrow \alpha_2$ phase transformation at grain boundaries didn't be found with aging.

(2) Dynamic recyrstallization took place and resulted in the presence of small γ phases at grain boundaries during high temperature stress rupture deformation.

(3) There exists a transition area between deformation-induced γ or α_2 precipitates and original α_2 or γ phases. The stacking sequence and composition of the transition area is different from that of γ and α_2 phases. The ratio of Ti to Al is higher than that of γ phase and lower than that of α_2 phase. The transition area was formed by slide of partial dislocations on close-packed planes and atomic diffusion.

(4) $\gamma \leftrightarrow \alpha_2$ phase transformation was finally accomplished by forming the transition area and atomic diffusion during high temperature stress rupture deformation.

Acknowledgements

This work was supported by Chinese National Nature Science Foundation.

References

- 1. Y. W. KIM and D. M. DIMIDUK, JOM 8 (1991) 40.
- 2. F. APPEL, P. A. BEAVEN and R. WAGNER, *Acta Metall. Mater.* **41** (1993) 1721.
- 3. Y. GAO, J. ZHU, H. SHEN, Y. WANG, Scr. Metall. Mater. 28 (1993) 651.

- 4. Y. G. GANG, F. D. TICHELAAR, F. W. SCHAPINK, Q. XU and C. Q. CHEN, *ibid.* 32 (1995) 981.
- J. G. WANG, L. C. ZHANG, G. L. CHEN, H. Q. YE and T. G. NIEH, *Mater. Sci. Eng.* A239/240 (1997) 287.
- 6. MIN LU and K. J. HEMKER, Acta Mater. 45 (1997) 3573.
- 7. D. I. KIMM and J. WOLFENNSTINE, Scr. Metall. Mater. 30 (1994) 615.
- 8. L. M. HSIUNG and T. G. NIEH, *Mater. Sci. Eng.* A339-240 (1997) 438.
- 9. R. V. VAIDYA, ZHE JIN, C. CADY, G. T. GRAY II and D. P. BUTT, *Scr. Mater.* **41** (1999) 569.
- M. ES-SOUNI, A. BARTELS and R. WAGNER, Acta Metall. Mater. 43 (1995) 153.
- 11. Idem., Mater. Sci. Eng. A192/193 (1995) 698.
- 12. R. W. HAYES and P. A. MCQUAY, Scr. Metall. Mater. 30 (1994) 259.
- 13. T. T. CHENG and M. R. WILLIS, Scr. Mater. 39 (1998) 1255.
- 14. D. Y. SEO, T. R. BIELER, S. U. AN and D. E. LARSEN, Metall. Mater. Trans. A 29A (1998) 89.
- 15. B. SKROTZKI, T. RUDOLF, A. DLOUHY and G. EGGELER, *Scri. Mater.* **39** (1998) 1545.
- 16. C. DERDER, R. BONNET, J. M. PÉNISSON and G. FROMMEYER, *ibid.* **38** (1997) 757.
- 17. G. HUG, A. LOISEAU and P. VEYSSIÉRE, *Phil. Mag.* 57 (1988) 499.
- 18. C. L. FU and M. H. YOO, Scri. Mater. 37 (1997) 1453.
- 19. J. N. WANG and T. G. NIEH, Acta Metall. 46 (1998) 1887.
- 20. A. LOISEAU and A. LASALONI, Acta Cryst. B39 (1983) 580.
- 21. Idem., Mater. Sci. Eng. 67 (1984) 169.
- 22. L. L. HE, H. Q. YE, R. G. XU and D. Z. YANG, *Mater.* Lett. **19** (1994) 17.

Received 10 November 1999 and accepted 2 March 2000